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Consumer Liquidity Demand

12.1 Introduction

As studied in Chapter 5, corporations and finan-

cial intermediaries secure their liquidity on the asset

side of their balance sheet through lines of credit

and the hoarding of liquid assets. They also man-

age their liquidity on the liability side. Short-term

debt drains liquidity much more than long-term debt

or securities, such as preferred equity and common

equity, that embody a valuable option of not being

forced to pay (preferred or common equity) divi-

dends if times get rough.

By assuming that investors’ utility is represented

by the present discounted value of their consump-

tions (with a discount rate normalized at 0), we have

ignored their own liquidity demand. In practice, con-

sumers face personal shocks and value the flexibil-

ity of being able to realize their assets when they

need to. For example, ignoring differences in rates of

return, they value demand deposits over and above

savings that are locked in for a few months or years.1

They hoard substantial amounts of liquid assets in

order to insure against shocks. They are willing to

sacrifice returns in order to make sure they will have

enough money to buy a house or a car when the

opportunity arises, to send their children to (more

or less expensive) college, or to protect themselves

against illness or unemployment. Thus, consumers

compete with corporations for the available stock of

liquidity.2 Consumer liquidity demand has been the

focus of a large and interesting literature, starting

with the seminal papers of Bryant (1980) and Dia-

mond and Dybvig (1983).

1. Unless they are worried about a time-inconsistency problem and

do not want to be exposed to the temptation to consume (see, for

example, Laibson 1997).

2. This competition has been little studied in the literature unfor-

tunately.

This chapter looks at three aspects of consumer

liquidity demand:

(i) The role that financial institutions may play as

(a) liquidity pools and (b) insurers. We will see

that the first role, which prevents the waste asso-

ciated with individual securing of liquidity (du-

plication of costly liquidity provision) is primor-

dial, while the second, which aims at flattening

the term structure of interest rates in order to

reduce the cost of impatience, is more fragile as

it is exposed to opportunistic arbitrage by finan-

cial markets.

(ii) The runs that may occur on financial interme-

diaries with (efficiently) limited liquid assets on

their balance sheet.

(iii) The design of a menu of securities that fits the in-

dividual profiles—short term versus long term—

of investors.

12.2 Consumer Liquidity Demand:

The Diamond–Dybvig Model and

the Term Structure of Interest Rates

12.2.1 Insuring against Liquidity Shocks

The Diamond–Dybvig model depicts the optimal

contract between a financial intermediary and a con-

sumer who faces uncertainty as to the timing of her

consumption. The model, in its simplest and most

common form, has three periods, t = 0,1,2.3

Consumer preferences. Consumers are ex ante

identical. For notational simplicity, let us assume

that they have no demand for consumption at date 0,

and therefore invest their entire date-0 resources,

1 per consumer. More generally, their savings are

3. Good alternative expositions of the Diamond–Dybvig model can

be found in Bond and Townsend (1995), Freixas and Rochet (1997),

and Gorton and Winton (2003).
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Figure 12.1 Liquid and illiquid investments.

equal to 1 per consumer. They have no further re-

sources at dates 1 and 2, and have state-contingent

preferences over date-1 and date-2 consumptions,

c1 and c2, given by

u(c1) if impatient (probability λ),

u(c2) if patient (probability 1− λ),

⎫

⎬

⎭

(12.1)

where the function u is increasing and strictly con-

cave, and u′(0) = ∞. Consumers do not know at

date 0 whether they will be impatient (“face a liquid-

ity shock”) or not. They learn at date 1 their “type”

(patient or impatient).4 In the simplest version of

this model there is no aggregate uncertainty, and so

exactly a fraction λ of consumers will want to con-

sume at date 1.

The specification of consumer preferences em-

bodied in (12.1) is a simple-minded way of formaliz-

ing the idea that the consumer does not know when

she will need money.5

Technology. Date-0 resources are invested in

short-term (liquid) and long-term projects. Short-

term projects yield r1 at date 1 per unit of date-0 in-

vestment. Similarly, 1 unit of investment (in a short-

term project) at date 1 yields r2 at date 2. Long-term

projects yield R > 1 at date 2 per unit of date-0 in-

vestment, and nothing at date 1. Liquidity is costly

as long-term projects have a higher yield:

r1r2 < R.

In words, an investor with a long-term perspective,

that is, one who would be unconcerned by the pos-

4. These types are also called “late dier” and “early dier” in the lit-

erature.

5. For example, most of the insights derived below still hold if the

consumer has utility u(c1 + c2) when patient, provided that the rate

of return between dates 1 and 2 (called r2 below) exceeds 1: r2 � 1.

sibility of a liquidity shock (λ = 0), would invest in

the long-term asset rather than in a short-term asset

that she would roll over at date 1 (see Figure 12.1).

Without loss of generality, let us assume that

r1 = 1.

This production function defines a technological

yield curve. Let rLT denote the per-period return on

the long-term asset:

(1+ rLT)
2 = R or rLT =

√
R − 1.

In comparison, a short-term investment at date 0

yields rate of interest

rST = r1 − 1 = 0 < rLT.

The technological yield curve is upward sloping.

Liquidating a long-term investment at date 1

yields a salvage value l per unit of date-0 investment.

In this section, we will assume for simplicity that this

salvage value is equal to 0, but more generally it will

be assumed to be lower than r1 = 1 (if l � 1, the

long-term asset dominates and there is never any

investment in short-term assets).

Lastly, the representative investor must decide

how to allocate her savings between short-term in-

vestment i1 and long-term investment i2:

i1 + i2 = 1.

12.2.2 Self-Provision of Liquidity Is Inefficient

As is the case for corporate liquidity demand and for

a related reason, self-provision of liquidity—a con-

sumer’s investing in liquid assets solely to cover her

own liquidity shock—is wasteful. If the consumer

happens not to face a liquidity shock, the costly liq-

uidity that she has hoarded is wasted. Somehow,
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the community of consumers should be able to use

the law of large numbers to reduce their investment

in liquid assets while enjoying the same amount of

liquidity.

Autarky. To demonstrate the inefficiency of an

“autarky situation” (as it is called in the literature),

suppose that, as announced earlier,

l = 0,

and that the representative consumer invests i1 and

i2 in short- and long-term assets. Then, because

r1 = 1,

c1 = i1 and c2 = r2i1 + Ri2 = R − c1(R − r2).

(12.2)

As the consumption c1 when the depositor is im-

patient grows from 0 to 1, the date-2 consumption

enjoyed by the patient incarnation falls from R to r2.

The representative consumer therefore maxi-

mizes her expected utility:

max
{c1}

{λu(c1)+ (1− λ)u(R − c1(R − r2))}. (12.3)

Indeed, the optimization with respect to {i1, i2} can

be reduced to one over the date-1 consumption,

since c1 determines the investment in short-term as-

sets needed and therefore the investment in long-

term assets as well. This optimization yields either

an interior or a corner solution:

either
λu′(c1)

(1− λ)u′(c2)
= R − r2

or c1 = 1

(

if
λu′(1)

(1− λ)u′(r2)
> R − r2

)

.

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(12.4)

It is easy to check that the fraction invested in liquid

assets i1 = c1 grows when the probability λ of fac-

ing a liquidity shock increases and when the “tech-

nological premium” associated with a long-term in-

vestment, R− r2, decreases. Note, in particular, that

everything is invested in the short-term asset when

this premium is low or when the probability of a liq-

uidity shock is high.

The benefits from pooling liquidity: mutual funds.

The autarky outcome studied above precludes any

resale. We have emphasized the excessive invest-

ment in liquid assets (possibly to the level of the

consumer’s entire savings). The flip side of the same

coin is that any investment in the long-term asset

is thrown away (as l = 0) when the consumer turns

out to be impatient. Somehow the opening of date-1

resale markets should generate gains from trade.

Long-term assets held by impatient consumers are

very attractive to patient consumers, who could use

their own liquid assets to purchase the impatient

consumers’ long-term assets.

Along these lines let us show that a mutual fund

enables consumers to enjoy the same date-1 con-

sumption as under autarky, and a much larger date-2

return. Let (c̄1, c̄2) denote the consumptions under

autarky (they solve (12.2) and (12.4)). Let the con-

sumers invest in a mutual fund with short- and long-

term investments:

i1 = λc̄1 and i2 = 1− λc̄1.

That is, they invest less in short-term assets and

more into long-term ones than under autarky. This

mutual fund distributes dividends equal to i1r1 = i1
at date 1, and i2R at date 2. At date 1, the impatient

consumers resell their share of the mutual fund to

patient consumers, who compete with their scarce

resources (the dividends they receive at date 1) for

this valuable asset. The date-1 mutual fund pricep is

such that the patient consumers’ resources, (1−λ)i1,

equal the value of the shares sold by the impatient

ones:

(1− λ)i1 = λp.

The impatient consumers then consume

c1 = i1 + p =
i1

λ
= c̄1.

At date 2, the patient consumers each consume

c2 =
i2R

1− λ,

since they end up holding not only their initial

shares, but also the shares of the impatient con-

sumers and therefore own 1/(1 − λ) shares of the

fund each. It is easily checked that

c2 =
[1− λc̄1]R

1− λ > c̄2 = R − c̄1(R − r2).

These computations show that the resaleability of

assets allows consumers to economize on liquidity

provision and thereby increases their welfare.



450 12. Consumer Liquidity Demand

Let us next compute the mutual fund’s optimal

portfolio: because

i1 = λc1 and i2 =
(1− λ)c2

R
, (12.5)

the optimal portfolio solves

max
{c1}

{

λu(c1)+ (1− λ)u
(

(1− λc1)R

1− λ

)}

, (12.6)

yielding

u′(c1)

u′(c2)
= R. (12.7)

Note that the optimal mutual fund does not fully in-

sure consumers against liquidity shocks (c1 < c2). It

is optimal to take advantage of the upward-sloping

yield curve and sacrifice some insurance. We will

come back to this point shortly.

Comparison with corporate liquidity demand. To

sum up, and as we have already noted, an important

analogy between corporate liquidity demand (Chap-

ter 5) and consumer liquidity demand (this chapter)

is that corporations and consumers alike must ob-

tain some insurance against liquidity shocks. Such

insurance is costly when long-term investments have

higher returns than short-term ones. Accordingly,

liquidity ought to be hoarded sparingly and dis-

patched properly. When shocks are not perfectly cor-

related among economic actors (corporations, con-

sumers), liquidity can be pooled and fewer low-yield

investments are needed in comparison with the situ-

ation in which these actors self-provide liquidity. Or,

put differently, autarky results in an overprovision

of liquidity.

Consumer and corporate liquidity demands, how-

ever, differ in at least two respects:

• A key theme of corporate liquidity demand is

that investments in short- and long-term assets,

while competing for scarce resources at date 0, are

later on complements, as liquidity enables long-term

assets to bear their fruits. There is no such comple-

mentarity in the consumer liquidity demand model.

• A consumer consumes the cash that she re-

ceives, and does not create any pledgeable income

(in the notation of Chapter 5, ρ0 = 0). This observa-

tion has several consequences. First, the consumers’

total investment is equal to their savings or “cash on

hand” (i1 + i2 = A = 1 here), while firms can invest

more than their cash on hand (i1 + i2 > A).6 In par-

ticular, the only way for consumers to satisfy their

liquidity needs is to invest in real, low-yield, short-

term assets. By contrast, Chapter 15 will show that,

under some circumstances, the private sector may

create enough “inside liquidity” and avoid having to

invest in low-yield assets.

12.2.3 Optimal Liquidity Insurance

The mutual fund is only one of many ways available

for pooling liquidity. Another familiar financial insti-

tution through which consumers pool their liquidity

is the bank. Demand deposits allow consumers to

choose the timing of withdrawals. A bank, of course,

does not hold an amount of liquid assets equal to the

level of demand deposits. Rather, it uses the law of

large numbers to economize on liquid assets, as it

knows that only a fraction of consumers will with-

draw their deposits at any point in time.

More generally, one may wonder about the nature

of the “optimal insurance scheme.” The first point

to note is that it is optimal to match the maturities

of investments and consumptions. Given that there

is no aggregate uncertainty and so one can predict

exactly the levels of investment that are needed for

date-contingent consumptions, investing i1 > λc1

and rolling over the unneeded income (i1 − λc1) is

dominated by investing “just what is needed” for

date-1 consumption (i1 = λc1) and investing the

rest in the higher-yield long-term asset. And so (12.5)

holds.

6. For instance, the two-shock model of Section 5.3.1 can be rewrit-

ten by adapting the notation slightly to facilitate the comparison with

the consumer liquidity demand. Recall that the entrepreneur chooses

investment scale I that, if the liquidity shock is met at date 1, yields

total income ρ1I and pledgeable income ρ0I (with ρ0 < ρ1). With prob-

ability λ, the firm must pay xρI to salvage a fraction x of its assets.

With probability 1−λ, it faces no shock at the intermediate stage. Let-

ting i2 = I and i1 = λxρi2, the breakeven and NPV conditions were

given by

i1 + i2 −A = [λx + (1− λ)]ρ0i2

and

Ub = [λx + (1− λ)]ρ1i2 − (1+ λxρ)i2.

Recall from Chapter 5 that, at the optimum, x = 1 if ρ(1− λ) < 1 and

x = 0 if ρ(1 − λ) > 1. In particular, i1 and i2 may both be positive,

while in the optimal mutual-fund policy of the risk-neutral version of

Diamond–Dybvig (the consumer’s expected utility is λc1 + (1− λ)c2),

i2 = 1 as long as R > 1 (concave versions of production technolo-

gies can also be studied so as to facilitate the comparison with the

Diamond–Dybvig model with risk-averse consumers).
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The optimal allocation must then solve (12.6),

yielding, again, a solution characterized by (12.7). Let

(c∗1 , c
∗
2 ) solve (12.7) and c∗2 = (1− λc∗1 )R/(1− λ).

Implementation by a deposit contract. The opti-

mal allocation can be implemented by a bank deposit

contract provided that the rate of interest received

by the consumer on this deposit depends on the date

at which she withdraws. Namely, the consumer re-

ceives rates of interest r∗ST and r∗LT on deposits with-

drawn at dates 1 and 2, such that

1+ r∗ST = c∗1 and (1+ r∗LT)
2 = c∗2 .

Let us follow Diamond and Dybvig (1983) and

most of the subsequent literature in assuming that

the consumers’ coefficient of relative risk aversion

exceeds 1:
∣

∣

∣

∣

cu′′(c)

u′(c)

∣

∣

∣

∣

> 1 for all c.

This assumption is empirically reasonable (see, for

example, Gollier 2001, Chapter 2). Equation (12.7),

u′(c∗1 )

u′(c∗2 )
= R,

can then be shown to imply that7

1 < c∗1 < c
∗
2 < R. (12.8)

We have

r∗ST > rST and r∗LT < rLT.

In words, the optimal insurance scheme flattens the

yield curve relative to the technological yield curve.

Note that, while the optimal insurance scheme

flattens the yield curve relative to the technologi-

cal one, no prediction can be made concerning its

slope. If risk aversion is low (the coefficient of rel-

ative risk aversion is close to 1), the yield curve is

close to the technological yield curve and is there-

fore upward sloping. In contrast, if risk aversion is

very high (the coefficient of relative risk aversion

goes to infinity), then consumptions at the two dates

are almost equalized and so the yield curve is down-

ward sloping (the interest on long-term deposits is

7. To show this, note that the assumption on the coefficient of rel-

ative risk aversion says that the function cu′(c) is decreasing. Hence,

Ru′(R) < 1 ·u′(1), and so at the feasible allocation {c1 = 1, c2 = R},
u′(c1)/u

′(c2) = u′(1)/u′(R) > R. To obtain (12.8), one must increase

c1 above 1, and concomitantly reduce c2 below R. To conclude, recall

that R > 1 and (12.7) imply that c∗1 < c
∗
2 .

compounded and yet does not exceed the short-term

deposit interest rate).

We have not yet wondered about whether this de-

posit contact is “incentive compatible.” For example,

would the patient consumers not want to withdraw

at date 1 and reinvest the proceeds in the date-1

short-term technology yielding r2? Indeed if r2 > 1,

and risk aversion is large, then c∗1 r2 > c
∗
2 from our

previous analysis, and so it is indeed in the inter-

est of patient consumers to feign impatience, cash

out, and reinvest. Let us therefore assume at this

stage that the bank is able to observe who is patient

and who is not, or, equivalently, is able to prevent

reinvestment elsewhere. This assumption is unreal-

istic, especially in a decentralized market economy,

but it has the pedagogical merit of separating insur-

ance concerns from incentive compatibility issues in

a first step. Let us be “patient” and delay the discus-

sion of incentive compatibility for a more general

treatment in the next section.

More general preferences: suboptimality of mutual

funds (advanced). The equivalence between mutual

funds and demand deposits breaks down for more

general specifications of preferences. Suppose with

Jacklin (1987) that the representative consumer’s

preferences are more generally given by

uI(cI
1, c

I
2) with probability λ (impatient),

uP(cP
1 , c

P
2) with probability 1− λ (patient).

To make sense of the terminology, one can imagine

that the impatient type has a higher marginal rate

of substitution between date-1 and date-2 consump-

tions ((∂u/∂c1)/(∂u/∂c2)) than the patient type.

Ignoring again incentive compatibility questions,

the optimal allocation then chooses investments and

consumptions so as to solve

max
{cI

1,c
I
2,c

P
1 ,c

P
2}
{λuI(cI

1, c
I
2)+ (1− λ)uP(cP

1 , c
P
2)}

s.t. (12.9)

[λcI
1 + (1− λ)cP

1]+
[λcI

2 + (1− λ)cP
2]

R
= 1,

since i1 = λcI
1+(1−λ)cP

1 is needed to deliver the total

date-1 consumption and i2 = [λcI
2 + (1− λ)cP

2]/R is

what it takes to deliver the total date-2 consumption.
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At the optimal allocation, marginal utilities are

equalized across types:

∂uI

∂cI
1

= ∂uP

∂cP
1

and
∂uI

∂cI
2

= ∂uP

∂cP
2

.

Furthermore,

∂uθ

∂cθ1

/

∂uθ

∂cθ2
= R for θ ∈ {I,P}.

In contrast, a mutual fund mechanism equalizes

only marginal rates of substitution: if p denotes the

price (in terms of date-1 consumption) of shares in

the date-2 dividend, then each type θ ∈ {I,P} faces

a date-1 budget constraint,

cθ2 − i2R = (i1 − cθ1 )
(

i2R

p

)

,

and maximizes uθ(cθ1 , c
θ
2 ) subject to this constraint.

Thus marginal rates of substitution are equalized:

∂uI

∂cI
1

/

∂uI

∂cI
2

= ∂uP

∂cP
1

/

∂uP

∂cP
2

.

But, in general, the mutual fund scheme contains

no mechanism to redistribute across types. The con-

sumer enters date 1 with the same budget (dividend

plus resale value) regardless of her type. This insur-

ance shortage must be remedied through a different

scheme, in which the consumer gets the solution to

(12.9), (cI
1, c

I
2) when impatient and (cP

1 , c
P
2) when pa-

tient. Assuming cI
1 > c

P
1 and cI

2 < c
P
2 , this can be ac-

complished by a combination of long-term savings

that are locked in until maturity and deliver cI
2 at

date 2, together with a deposit contract that offers

the option of withdrawing the total amount cI
1 at

date 1 versus withdrawing the smaller amount cP
1 in

exchange for return [cP
2 − cI

2] at date 2.

Even if we rule out reinvestments outside the bank

offering such contracts, it is no longer clear that the

optimal allocation is incentive compatible, that is,

that type θ ∈ {I,P} prefers (cθ1 , c
θ
2 ) to (cθ

′
1 , c

θ′
2 ) for

θ′ ≠ θ (while this created no difficulty with the more

special preferences studied earlier). (Noninnocuous)

conditions need to be imposed to guarantee that

the optimal allocation is incentive compatible (see

Jacklin 1987).

Interbank lending. As shown by Bhattacharya and

Gale (1987), interbank lending performs a useful

pooling function when banks suffer idiosyncratic

shocks in their depositors’ withdrawal rates. Thus,

suppose that there are two ex ante identical banks.

The fraction of impatient depositors will be high

(λH) in one bank and low (λL) in the other. So there

is no aggregate uncertainty. The average withdrawal

rate is λ = 1
2
(λH + λL). But there is idiosyncratic risk:

no one knows at date 0 which bank will face the high

withdrawal rate.

The banks can reach the efficient outcome by

granting each other credit lines. They invest i1 = λc∗1
and i2 = (1 − λ)c∗2 /R per consumer each and re-

dispatch the liquid asset between the two when the

shocks accrue. The liquidity-poor bank (with with-

drawal rate λi = λH) can transfer some of the claim

to the proceeds i2R on its long-term investment to

the liquidity-rich bank (with withdrawal rate λi = λL)

in exchange for 1
2
(λH − λL)c

∗
1 at date 1.8

12.2.4 Financial Markets and

the Jacklin Critique

A common theme in the economics of informa-

tion and incentives is that markets conflict with

the optimal provision of insurance (e.g., Pauly 1974;

Helpman and Laffont 1975; Bernheim and Whin-

ston 1986). Jacklin’s (1987) critique of the Diamond–

Dybvig model fits within this overall theme.

In a nutshell, Jacklin argues that financial mar-

kets’ ability to arbitrage the implicit cross-subsidy

in favor of the impatient relative to the technolog-

ical yield curve undermines the overall insurance

mechanism.

Suppose that a consumer initially bypasses the

insurance system and invests her entire savings in

the high-yield long-term asset (i2 = 1). This strat-

egy clearly delivers the highest possible payoff if the

consumer turns out to be patient, since then

c2 = R > c∗2 .

But what if the consumer ends up being impatient?

The trick is then to sell the claim to the long-term

payoff to the patient consumers, who use their abil-

ity to withdraw their deposits at the bank in or-

der to finance the purchase. Normalize the number

8. The analysis by Bhattacharya and Gale (1987) is much broader

than reported here. In particular, it also deals with situations in which

banks are imperfectly informed about each other’s solvency (invest-

ment in or return on the long-term assets, or the number of withdraw-

ing depositors).
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of shares issued by the consumer at one (divisible)

share. A patient consumer can withdraw an amount

c∗1 from the bank and is willing to pay price p per

share for α shares such that

c∗1 = αp,

as long as she gets at least as much consumption at

date 2 as when she leaves her money at the bank:

αR � c∗2 .

That is, the consumer who has invested in the long-

term asset can obtain price p for the claim on this

asset, such that

p = c∗1 R

c∗2
> c∗1 .

In effect, this opportunistic consumer free rides on

the banks’ costly provision of liquidity. She can have

her cake and eat it too.

More generally, the same reasoning shows that

any insurance scheme is undone by financial mar-

kets as long as c2 < R. Hence, in the presence of

financial markets, the best feasible allocation is

ĉ1 = 1 and ĉ2 = R. (12.10)

Financial markets force the yield curve back to the

technological yield curve. The reader will find in Allen

and Gale (1997) useful complements on free riding

and the underprovision of liquidity.

Remark (differential access to financial markets). Di-

amond (1997) studies the intermediate case in which

some consumers have access to financial markets

(as in Jacklin 1987) while others do not (as in Dia-

mond and Dybvig 1983). Suppose, for instance, that

everyone is ex ante identical. At date 1, the consumer

learns her type. But there are now three types rather

than two: an impatient type (receives c1) and two pa-

tient types. In Diamond’s terminology, those with ac-

cess to financial markets are “type 2A,” while those

with no such access (who cannot reinvest the money

they withdraw at date 1) are “type 2B.” The bank is

unable to tell the different types apart. The date-0

optimal contract offers return c1 if the consumer

withdraws at date 1 and cB
2 at date 2 if the consumer

does not, where

1 < c1 < c
B
2 < R.

In equilibrium, patient consumers with no access

to financial markets just consume cB
2 . Patient con-

sumers with such access withdraw c1 and reinvest

in one of these long-term investment vehicles yield-

ing R; they consume9

cA
2 = c1R > R.

The extent of flattening of the bank’s yield curve rel-

ative to the technological yield curve then depends

on the fraction of consumers with no access to finan-

cial markets. If this fraction is important, extensive

cross-subsidies à la Diamond–Dybvig are doable; if

not, then the bank must offer a steep yield curve,

close to the technological yield curve.

12.2.5 Economizing on Liquidity by

Rolling over Deposits

Let us ignore the Jacklin critique and address an-

other potential enrichment of the Diamond–Dybvig

model. By not describing the economy as an ongo-

ing one, Diamond and Dybvig overestimate the need

for low-yield liquid assets, at least in a relatively sta-

tionary context. The idea is that if investments by

incoming generations of consumers (new investors)

offset the disinvestments by earlier generations of

investors facing liquidity needs, then no asset needs

to be liquidated and everything can be invested in

the high-yield long-term asset.

Following Qi (1994), consider an overlapping-

generations (OLG) version of the Diamond–Dybvig

model in which:

• a new generation (“generation t”) invests its sav-

ings (1 per individual) at date t, and lives up to

date t + 2;

• members of this generation learn at date t + 1

whether their utility function is u(ctt+1) (proba-

bility λ) or u(ctt+2) (probability 1 − λ), where ctτ
is generation t’s consumption at date τ ;

• the population is constant; and

• the technology is similar to that described above:

1 unit of “long-term investment” yields R > 1

two periods later; 1 unit of “short-term invest-

ment” yields 1 one period later.

9. One can envision that this arbitrage is enabled by financial enti-

ties that invest in the long-term asset and resell it at cost (1) at date 1

to these type-2A consumers.
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Table 12.1 The OLG structure.

t t + 1 t + 2 t + 3 t + 4

Generation t invests 1 u(ctt+1) (prob. λ) u(ctt+2) (prob. 1− λ)

Generation t + 1 invests 1 u(ct+1
t+2) (prob. λ) u(ct+1

t+3) (prob. 1− λ)

Generation t + 2 invests 1 u(ct+2
t+3) (prob. λ) u(ct+2

t+4) (prob. 1− λ)

Table 12.1 summarizes the timing.

Consider a bank that in steady state offers con-

sumption profile {c1 (for the impatient), c2 (for the

patient)} so as to maximize the depositors’ expected

utility:

max{λu(c1)+ (1− λ)u(c2)}. (12.11)

This bank needs not invest in low-yield short-term

investments. At period t + 2, say, it can employ the

return R on the generation t’s deposits invested in

high-yield assets, to honor the deposit withdrawal

by generation t’s patient types and generation t+1’s

impatient types. Thus, the budget constraint is

λc1 + (1− λ)c2 � R. (12.12)

Note that the maximization of (12.11) subject to

(12.12) yields perfect insurance:

c1 = c2 = R.

This allocation, which exhibits a downward-slop-

ing yield curve, however, is not incentive compatible

if patient consumers can withdraw and reinvest in

a similar bank (or the same bank under a different

name). Such arbitrage indeed imposes that

(c1)
2 � c2. (12.13)

That is, if the consumer can withdraw and reinvest,

the yield curve must be either flat ((c1)
2 = c2) or

upward sloping ((c1)
2 < c2). Given that the opti-

mal yield curve in the absence of constraint (12.13)

is downward sloping, the constrained optimal yield

curve is flat :

(c1)
2 = c2,

which implies

c2 > R > c1 > 1.

This analysis requires that there be no aggregate un-

certainty and that the economy be in a steady state.

In particular, Qi (1994) looks at how a bank can get

started. We refer to the paper for more detail.

While highly stylized, this OLG analysis captures

an important aspect of reality. Banks make heavy

use of the facts that demand deposits are rolled

over, and that, to honor the promises made in pre-

vious deposit agreements, they can attract new de-

posits rather than liquidate their long-term assets.

The same strategy plays an important role on the

equity side as well. For example, the underlying as-

sets in a closed-end mutual fund (whose shares are

sold on the open market) are not liquidated when an

investor wants to sell her share. Rather, this share is

transferred to another investor.

Allen and Gale (1997, 2000, Chapter 6) analyze

an OLG model with a safe and a risky asset. The

safe asset can be accumulated over time. Financial

markets allow cross-sectional risk-sharing opportu-

nities to be exploited, but may provide insufficient

intertemporal risk smoothing. An intermediated sys-

tem fares better in the latter dimension. However,

the intertemporal smoothing provided by a long-

lived intermediary is fragile as arbitrage opportuni-

ties undermine the insurance it offers.

12.3 Runs

12.3.1 Depositor Panics

A substantial fraction of the literature on consumer

liquidity demand, starting with Bryant (1980) and

Diamond and Dybvig (1983), is preoccupied by the

possibility of bank runs.10 A basic hazard faced by

financial institutions performing a maturity trans-

formation function is the risk that depositors run

for exit even when they do not actually experience

liquidity needs. A run may occur when long-term as-

sets are liquidated in order to honor the withdrawal

demands. Thus, if other depositors withdraw, even a

patient depositor has an incentive to withdraw since

10. Early analysis of bank runs can be found in Bagehot (1873)

and Kindelberger (1978). Other useful references include Fulghieri and

Rovelli (1998), Gale and Vives (2002), and Rochet and Vives (2004).
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the financial institution then becomes an empty

shell.

To understand the mechanics of bank runs, con-

sider the technology described in the previous sec-

tion, with

l = r1 = r2 = 1 and R > 1.

That is, a unit long-term investment yields R if car-

ried to its maturity, but only 1 if it is liquidated at

date 1. The short-term technology in each period is

a storage technology that transforms 1 unit of good

in a given period into 1 unit of good in the following

period. The long-term investment here dominates

the short-term investment, and we will therefore fo-

cus on investment policies in which the bank invests

solely in the long-term asset:

i1 = 0 and i2 = 1.

The representative consumer, as before, saves 1

at date 0 and learns her type at date 1; with prob-

ability λ, the consumer is impatient and has utility

u(c1), and with probability 1 − λ, the consumer is

patient and has utility u(c2). We assume that a pa-

tient consumer who withdraws at date 1 has access

to the storage technology and can thus consume at

date 2 what she withdrew at date 1.11

Consider the Diamond–Dybvig allocation (letting

L denote the fraction of the long-term asset that is

liquidated at date 1):

max
{c1,c2,L}

{λu(c1)+ (1− λ)u(c2)}

s.t.

λc1 = L,
(1− λ)c2 = R(1− L).

This program is equivalent to

max
{c1}

{

λu(c1)+ (1− λ)u
((

1− λc1

1− λ

)

R

)}

,

yielding, as earlier,

u′(c1)

u′(c2)
= R,

and so, provided that the consumers’ coefficient of

relative risk aversion exceeds 1,

1 < c∗1 < c
∗
2 < R.

11. Alternatively, we could assume that the patient consumer has

utility u(c1 + c2).

1 1 λ
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1
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2
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c
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Figure 12.2 Incentive to run.

Let λ̂ � λ denote the fraction of consumers who

withdraw at date 1 (so λ̂ = λ+ (1− λ)x, where x is

the fraction of patient consumers who run on the

bank). Because c∗1 < c
∗
2 , the Diamond–Dybvig out-

come λ̂ = λ is an equilibrium. But this equilibrium

is not unique.

A consumer receives

min

{

c∗1 ,
1

λ̂

}

if she withdraws at date 1,

max

{(

1− λ̂c∗1
1− λ̂

)

R,0

}

if she does not.

To see this, note that the bank keeps liquidating

long-term investments as long as it cannot honor

the withdrawal requests. If λ̂c∗1 < 1, then all such re-

quests are satisfied, and the fraction (1− λ̂) of con-

sumers who did not run receives the return R on the

remaining long-term investment (1− λ̂c∗1 ), which is

less than c∗2 = [(1− λc∗1 )/(1− λ)]R.

The payoffs are represented as functions of λ̂ for

λ̂ � λ in Figure 12.2.

An interesting property of the strategic inter-

action among depositors is that the incentive to

run (the difference between the consumptions when

withdrawing at date 1 and waiting) increases with

the number of other consumers who withdraw (at

least as long as λ̂ < 1/c∗1 , since beyond this value, a

late withdrawer receives nothing anyway). This game

exhibits “strategic complementarities” (my running

increases your incentive to run). And indeed there

is exactly one other stable equilibrium, in which all
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consumers withdraw at date 1. This “bad or panic

equilibrium” yields a low consumption for both the

patient and the impatient types.12

Large depositor. Suppose now that a fraction µ > 0

of deposits is held by a large depositor.13 The frac-

tion 1−µ is held by atomistic depositors (previously

we had µ = 0). Let us further assume that the large

depositor has a single incarnation (patient or impa-

tient), which, if we assume, as we will do, that the to-

tal fractions of “impatient and patient deposits” are

fixed at levels λ and 1−λ, respectively, requires that

µ � min(λ,1− λ).14 How is the analysis affected?15

Suppose first that the large depositor turns out to

be impatient. Then the analysis is unaltered, since

the only strategies of interest are those of the patient

depositors, who face a real choice between with-

drawing and leaving their deposits at the bank.

In contrast, the analysis is changed when the large

depositor is patient. On the one hand, the no-run

equilibrium still exists (since c∗1 < c
∗
2 ). On the other

hand, the panic equilibrium may disappear. A run

can occur only if the large depositor does not find it

in her interest to keep her money in the bank, or

1 �
1− λ̂c∗1
1− λ̂

R with λ̂ = 1− µ.

Put differently, the risk of a run disappears if

(1− µ)(Rc∗1 − 1) < R − 1.

In particular, for µ close to (1 − λ) (most of the

“patient deposits” are held by the large depositor),

this latter condition is verified (from c∗1 < c
∗
2 ), and

so there is no panic equilibrium. More generally, the

panic equilibrium is less likely to exist, the larger the

fraction of deposits held by a large player. This is eas-

ily understood: panics are generated by a lack of co-

ordination. This coordination problem is less likely

to be an issue if deposits are concentrated in large

12. As indicated in the figure, there is a third equilibrium with

λ < λ̊ < 1. This equilibrium is, however, unstable: suppose that a

slightly higher fraction than λ̊ withdraws. Then everyone else wants

to withdraw.

13. To make things comparable, assume that the consumptions “ct”

of that depositor are consumptions per unit of deposit.

14. More generally, we could avoid this restrictive assumption, and

assume that the large depositor suffers a liquidity shock correspond-

ing to a (random) fraction of her deposits.

15. Large depositors are considered in Corsetti et al. (2002) and (in

a version closer to that adopted here) Ventura (2001).

part in a single hand (it is no longer an issue with a

single patient depositor).

12.3.2 Antirun Policies

As was recognized by Diamond and Dybvig and the

subsequent literature, there are various ways to pre-

vent bad equilibria from happening.

12.3.2.1 Suspension of Convertibility

One policy for preventing runs is a suspension of

convertibility (Gorton 1985, 1988). Before the de-

sign of deposit insurance schemes, suspensions of

convertibility occurred frequently. For example, the

American banking system suspended convertibility

eight times between 1814 and 1907.

The idea behind a suspension of convertibility is

straightforward. Suppose that the bank announces

that it will stop honoring demand deposit with-

drawal once level λ is reached. Patient depositors

then know that there will be enough long-term in-

vestment around at date 2 to honor their date-2

claim c∗2 . And so they have no incentive to run.16

Suspensions of convertibility are, of course, no

panacea. They raise a moral-hazard problem on the

bank’s side. The run may actually be triggered by bad

news about the bank’s fundamentals (we will come

back to this). In this case, the bank, if given the right

to suspend convertibility may use this right to stop

outflows even when its management, rather than a

pure depositor panic, is the culprit for the run. This

is why suspensions of convertibility are better en-

trusted to the central bank (or at the country level

with the International Monetary Fund), even though

these solutions are not without hazard either.

12.3.2.2 Credit Line and Lender of Last Resort

Second, the bank may have an explicit or implicit

credit line with another financial institution or the

central bank that protects it against a run. Again, if

patient consumers know that long-term assets will

not be forced to liquidation by a run, they have no

reason to worry and therefore do not withdraw their

deposits.

16. See Green and Lin (2003) and Peck and Shell (2003) for studies

of more general contingent withdrawal contracts, in which the amount

that can be withdrawn depends on the number of consumers who have

already withdrawn.
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Of course, in the case of a private sector arrange-

ment, the credit line mechanism can protect only

against a run on a single bank or a small number of

banks. To avoid a run on a single bank, it suffices that

each bank stand ready to liquidate a small amount

of its long-term assets to come to the rescue of the

endangered bank (or to hoard a little more liquidity

than needed if l < 1).

However, such arrangements cannot protect the

banking sector as a whole. If runs occur simultane-

ously on all banks, liquidity must be provided from

elsewhere (the central bank or abroad).

12.3.2.3 Interbank and Other Liquidity Markets

Alternatively, banks can make up for temporary

shortfalls in liquidity by borrowing liquidity in the

interbank market. A solvent bank, with fully pledge-

able income Ri2 in the model, can credibly promise

to repay any date-1 loan that is destined only to

honor the deposit withdrawals.

While “bank runs” have a negative connotation

and much thought has been given to how to avoid

them, another strand of the literature, initiated by

Calomiris and Kahn (1991), emphasizes the benefits

of creating competition in monitoring. The possibil-

ity of a bank run keeps depositors (or, presumably,

at least large ones) on their toes. They are then in-

duced to collect information about the bank’s per-

formance. There is then a tradeoff between the ineffi-

ciency generated by liquidations and the disciplining

benefit associated with the monitoring of banking

moral hazard.17

12.4 Heterogenous Consumer Horizons

and the Diversity of Securities

In the Diamond–Dybvig model, consumers are iden-

tical ex ante (although not ex post ), and a single

claim fits them all. In practice, consumers are het-

erogenous in several respects, including their sav-

ings horizon, or, to use the terminology of this chap-

ter, the frequency of liquidity shocks. Gorton and

Pennacchi (1990) provide an interesting extension

of the Diamond–Dybvig model that allows for such

heterogeneity.

17. See Chapters 8 and 9 for a discussion of the variety of ways in

which incentives for monitoring can be designed.

Their study is motivated by the long-standing ad-

vice given by bankers to their clients: “If you save for

the long term, invest in equities; if you are looking

for liquidity, invest in debt instruments.” The alleged

“liquidity” benefits of debt in this advice does not

quite refer to the possibility that equities cannot be

resold quickly in well-functioning markets. Rather, it

refers to the fear of trading against better-informed

traders in such markets.

A useful innovation of the Gorton–Pennacchi

model is to employ the consumer-liquidity-demand

model to refine our understanding of market micro-

structure. In traditional models of markets micro-

structures (say, Kyle 1985), trade is driven by the

presence of apparently irrational “liquidity traders”

who trade assets without regard to their return.

These liquidity traders generate value for the other

traders and thereby give rise to trading volume.18

The Diamond–Dybvig model allows the model to

endogenize liquidity trading by explicitly modeling

preference shocks that give rise to a demand for al-

tering one’s portfolio. The benefit of this “rational-

ization” of liquidity trading is not purely aesthetic.

As we will see, it shows that liquidity trading in equi-

ties is highly responsive to the set of securities that

are offered in the market.

The Gorton–Pennacchi model is similar to Dia-

mond and Dybvig’s, with two twists. First, the payoff

of the long-term investment is uncertain and is not

commonly observed at date 1. Second, the number of

impatient consumers is also random and unobserv-

able. In contrast, consumers are risk neutral, which

eliminates the insurance focus that is so prominent

in the Diamond–Dybvig literature.

There are three dates (t = 0,1,2).

Consumers. Consumers all have date-0 savings

equal to 1, but are ex ante heterogenous with respect

to their consumption horizon. More precisely, there

are two categories of consumer.

18. Another approach is to assume that investors are risk-averse

and learn over time news about their tastes or about the value of the

components of their existing portfolios, and therefore want to rebal-

ance these portfolios. This approach is much more complex (and de-

pends on the set of futures and derivative markets allowed). Much

of the microstructure literature therefore relies on the irrational-

liquidity-traders approach.
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Potential liquidity traders, in proportion α, have

the following preferences:

u(c1, c2) = c1 with probability λ̃,

u(c1, c2) = c1 + c2 with probability 1− λ̃.

As in Diamond and Dybvig, these consumers learn

their preferences at date 1; the realized fraction of

liquidity traders, λ̃, takes two possible values, λL or

λH, with λH > λL. The realization of λ̃ is unobserv-

able.

Long-term investors, in proportion 1−α, have the

following preferences:

u(c1, c2) = c1 + c2 with probability 1.

That is, long-term investors take a long-term per-

spective and never need money at date 1 (they are

happy to get the return from their savings at date 2).

Technology. On the technology side, we will as-

sume that the savings are invested in a long-term

asset yielding a random R̃ at date 2, where R̃ = RL

or RH > RL. This long-term return is publicly observ-

able only at date 2 (when realized).

States of nature. Let us now turn to the proba-

bility distribution over the state of nature (λ̃, R̃).19

In principle, there are four possible states of nature

as each of these variables can take on two values.

To simplify the computations, we will make two in-

nocuous assumptions. First, λ̃ and R̃ are perfectly

correlated in the following way. There are only two

states of nature:

(λL, RL) with probability qL,

(λH, RH) with probability qH,

with qL + qH = 1. Second, potential liquidity traders

that are revealed patient do not have cash at date 1

to participate in the date-1 asset market. Only long-

term investors (and possibly some newly arrived ar-

bitrageurs, also with utility function c1 + c2) have

date-1 resources to buy the shares sold by the im-

patient investors. (The second assumption is just

meant to shorten the analysis by not having to con-

sider the inferences drawn by the patient liquidity

19. Formally, the state of nature also includes the identity of those

among potential liquidity traders who will face a liquidity shock. Be-

cause there is no aggregate uncertainty in this respect, we omit this

description from that of the state of nature.

traders about the state of nature from the observa-

tion that they individually are patient. The first as-

sumption focuses the analysis on those two states

of nature in which the asset price may not reveal

publicly the state of nature. The reader can alterna-

tively assume four states of nature and follow the

lines of Section 8.3 to check that the analysis in no

way hinges on these two assumptions.)

Speculator. To formalize the idea that small in-

vestors may “lose their shirt” when disposing of

the asset at date 1, let us assume that an informed

trader, called the speculator, appears at date 1, who

learns the state of nature and may buy as many

shares as he likes (he has a large enough date-1 en-

dowment). The speculator cannot engage in short

sales; neither can any other economic agent. The

speculator also has preferences c1 + c2. He places

at date 1 an order flow. The date-1 arbitrageurs

(long-term investors or newly arrived arbitrageurs)

observe only the total order flow, that is, the im-

patient investors’ sales minus the speculator’s pur-

chase, but cannot decompose this order flow to fig-

ure out exactly how much is demanded by the spec-

ulator (otherwise they could infer the state of na-

ture from the speculator’s order flow, as we shall

see shortly).

12.4.1 Trading Losses in the Stock Market

When informed that the state is L, the speculator

knows that the long-term payoff is RL and since the

asset price P necessarily lies in the interval [RL, RH],

the speculator does not buy and so stays out of the

market. The order flow is then equal to the impatient

consumers’ sales:

αλL.

When learning that the state is H, the speculator

buys a quantity b > 0 of shares. The dilemma facing

the speculator is that a high demand reveals that the

state is high, leading arbitrageurs to raise their own

demand until the price is RH and so there is no profit

opportunity. More formally, the order flow is now

αλH − b.

The only value of purchases by the speculator that

does not reveal that the payoff is RH is

b = α(λH − λL).
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The equilibrium involves full pooling. Arbitra-

geurs learn nothing about the state of nature, and

their posterior belief that the state is H is still qH.

And so the market price of shares at date 2 is always

P = qHRH + qLRL.

This pooling gives rise to adverse selection in the

stock market. Arbitrageurs (who, after all, are not

forced to trade) are not affected by this adverse

selection, as they discount the price to reflect the

asymmetry of information. The victims of adverse

selection are the impatient consumers or liquidity

traders, who sell at a price reflecting the ex ante ex-

pectation, even though the high state is more likely

per unit of sale (the liquidity traders sell more in the

high state).

The speculator makes (ex ante) expected profit,

π = qH[α(λH − λL)][RH − P].

That is, the speculator trades only in the high state

(probability qH). He then trades as much as is consis-

tent with not revealing his information (α(λH−λL)),

and makes profit RH − P per share purchased. The

speculator’s profit can be rewritten as

π = α(λH − λL)qHqL(RH − RL).

Note, in particular, that this profit grows with the

fraction of potential liquidity traders and with the

uncertainty about the extent of their actual liquidity

trading.

To confirm that the speculator feeds off the po-

tential liquidity traders, let us compute the latter’s

expected loss:

qHλH(RH − P)− qLλL(P − RL)

= (λH − λL)qHqL(RH − RL)

= π

α
.

The speculator’s profit is indeed equal to a potential

liquidity trader’s expected loss times the number (α)

of such traders.

12.4.2 Debt as a Low-Information-Intensity

Security and the Equity Premium

As in Chapter 8, the liquidity traders’ loss can be

interpreted as generating an equity premium. In or-

der for potential liquidity traders to hold the stock,

they must be enticed by a date-0 price discount, or

equivalently an equity premium (a higher return).

There are (at least) two equivalent versions that can

be offered for depicting this phenomenon in the

context of this bare-bones model. First, potential

liquidity traders demand to pay less than the ex-

pected return. Namely, the price discount per share

is equal to π/α so that the issuer must price shares

at qHRH + qLRL − (π/α) in order to arouse interest

from liquidity traders. Second, were the stock sold

solely to the long-term investors (which requires that

they have enough savings to purchase all the shares),

the price would jump by π/α to qHRH + qLRL.

This equity premium observation (which is not

specific to the Gorton–Pennacchi model, and is

rather a general implication of the logic of market

microstructure) also fits well with the well-known

fact that the return on equity grows with the hold-

ing length. As popular wisdom commands, the stock

market is more appealing to long-term investors

than to short-term ones.

Let us push the comparison with the analysis of

Chapter 8 a bit further. Speculation (the acquisi-

tion of private information about returns in order to

profit from trading securities) is here a purely para-

sitical activity. It is even socially wasteful if either the

speculator incurs a cost (presumably smaller than

π ) in order to acquire the information, or if the po-

tential liquidity traders are discouraged from buying

the security because they will “lose their shirt” and

do not find an alternative and substitutable security

to invest in.

The perspective on speculation provided by Gor-

ton and Pennacchi is therefore quite different from

the Holmström and Tirole (1993) view exposited in

Chapter 8. There, even though we stressed that there

could be excessive speculation, we emphasized the

benefits of market monitoring. We argued that spec-

ulators’ greed creates a measure of the value of as-

sets in place, and therefore allows firms to assess the

performance of their management. In other words,

market monitoring is an integral part of the firms’

governance mechanism. We will later return to this

discussion.

Returning to the Gorton–Pennacchi model, we ob-

served that potential liquidity traders are willing to

pay less than long-term investors for the shares. This
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suggests that it is in the interest of the security de-

signers to introduce a security that is better suited to

their needs, and thereby offer a menu of securities.

Indeed, suppose that

α(qHRH + qLRL) � RL. (12.14)

This condition is more likely to be satisfied when the

projects have sufficient guaranteed income or col-

lateral (RL) and when there are few potential liquid-

ity traders. The security designers20 can then offer

a fraction α (or more generally a fraction between α

and RL/[qHRH + qLRL]) of securities with safe pay-

off qHRH + qLRL (or slightly less21) at date 2. The

residual claim on the long-term projects is then sold

to the public in equity shares. The safe debt secu-

rity appeals to potential liquidity traders because it

is not affected by adverse selection. Its final payoff

is independent of the state of nature and is there-

fore common knowledge. Thus, as long as condition

(12.14) holds, the equity premium, or equivalently

the profit that can be enjoyed by an informed spec-

ulator, vanishes.

In contrast, if

α(qHRH + qLRL) > RL,

there are too many potential liquidity traders in the

market to accommodate entirely with a safe claim.

They must bear some of the risk and therefore the

equity premium reappears.

12.4.3 A Broader Perspective

The issuance of debt illustrates a broader strategy

already alluded to in Chapter 8: investors who may

be forced to sell fear that they will be trading against

better-informed players and try to avoid this likely

loss by purchasing securities that are less exposed

to this risk. This flight to low-information-intensity

securities takes multiple forms, and debt is only one

of these.

20. We can assume that these security designers correspond to the

corporate entities that invest in the long-term projects. Alternatively,

these corporate entities could issue just stocks, and financial markets

could perform the repackaging of these stocks by stripping the debt

component from the stocks and offering it as a safe debt derivative

instrument. As long as financial markets are competitive and efficient,

the initial stocks would not include an equity premium, due to the

expectation of subsequent repackaging.

21. In order to make sure that the long-term investors are not at-

tracted to buy the debt security.

Another way of limiting costly trade with specula-

tors is to buy bundles of indices on the grounds that

they are less exposed to asymmetric information

“thanks to the law of large numbers”: stock index

futures, closed-end mutual funds, real-estate invest-

ment trusts, etc. The general idea is that even though

one may be poorly informed about the value of a

particular firm, one is on average better informed

about that of a bundle of firms as an overapprecia-

tion of a firm’s value tends to be compensated by an

underappreciation of another (see Subrahmanyam

1991; Gorton and Pennacchi 1993). This is easily il-

lustrated in the context of “continuum of firms” with

independent date-2 profit realizations. The per-firm

ex post value of the index is then a deterministic

qHRH + qLRL, and so potential liquidity traders can

enjoy liquidity without any sacrifice in return.

There is some empirical support for this view. For

example, the bid–ask spread (which in part measures

the extent of the adverse-selection problem) for the

index is about one-tenth of that in individual stocks.

Furthermore, the spectacular development of index

funds in the last two decades points to the benefits

of such bundling.

This evolution toward debt and bundles of equity

claim is privately rational for (at least short-term) in-

vestors. It is also socially desirable if one subscribes

to the view of Gorton and Pennacchi. On the other

hand, it also jeopardizes the role of financial mar-

kets as a monitoring device,22 and therefore has po-

tentially detrimental effects. The cost involved in

turning companies public and in spinning off divi-

sions to have them listed individually are evidence

of a demand for market monitoring. An important

research topic is therefore to combine the negative

and positive aspects of market monitoring and to an-

alyze whether the investors’ private incentives will in

the future affect the relevant tradeoffs.23

22. At least of the speculative/passive type studied in Chapter 8;

concerning active monitoring (see Chapter 9), index funds do have

some influence as they are not swayed by business ties.

23. While this section has assumed that trading costs are governed

by adverse selection in asset markets, another relevant consideration

is the existence of transaction costs. Favero et al. (2005) analyze a

Diamond–Dybvig model in which consumers can buy or sell at date 1

some assets with heterogeneous and exogenously determined trans-

action costs. Consumers can only trade the set of primary assets (and

so, as in standard microstructure theory, consumers cannot econo-

mize on transaction costs by trading asset bundles or derivatives).
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Supplementary Sections

12.5 Aggregate Uncertainty and

Risk Sharing

The analysis of interest rates in Section 12.2 focused

on the term structure and neglected the allocation

of the interest rate risk in an economy by assum-

ing that there was no aggregate risk. In practice, in-

terest rate risk is a serious issue, and financial in-

stitutions have developed various instruments, such

as interest rate swaps, to reallocate the risk among

economic agents. Ultimately, someone—consumers,

banks, corporations, or other agents—must bear the

risk. A question confronting both the private sector

and public policy (e.g., through the regulatory treat-

ment of value at risk in banking institutions) is who

should actually bear it.

To start analyzing interest rate risk, Hellwig

(1994) extends the Diamond–Dybvig model to allow

for an uncertain realization at date 1 of the date-2 re-

turn on short-term investment r2. The randomness

of r2 is a metaphor for a more general uncertainty

about the rate of return on new investments in the

economy.24

Consumers’ preferences are as described in Sec-

tion 12.2: facing known probability λ of a liquidity

shock, their expected utility is

E[λu(c1)+ (1− λ)u(c2)],

The main point of the Favero et al. paper is to analyze the impact of

transaction costs on asset pricing and to estimate the model in the

euro area. (Other recent papers analyzing the impact of transaction

costs on asset pricing in general equilibrium models include Acharya

and Pedersen (2005), Eisfeldt (2003), and Vayanos (2004).)

24. An early paper on the sharing of long-term aggregate risk in

Bryant–Diamond–Dybvig models is Jacklin and Bhattacharya (1988). In

their basic model, the date-2 return R of the long-term asset is random

and no information about R is revealed before date 2. Agents have

more general preferences than posited here, in that their valuation for

the income stream (c1, c2) is

u(c1)+ βtu(c2),

where βt = β1 for the impatient consumers and βt = β2 > β1 for

the patient ones. In the absence of interim information about R, a

“deposit contract” can be written as {c1t , c2t(R)}, where t = 1 for

the impatient types and t = 2 for the patient ones. Jacklin and Bhat-

tacharya then introduce a date-1 signal about returnR. As in, for exam-

ple, Hirshleifer (1971) and Laffont (1985), interim information accrual

may reduce welfare.

where c1 denotes the consumer’s date-1 consump-

tion in the state of nature in which she is impatient,

c2 the date-2 consumption when she is patient, and

the expectation will refer to the impact of aggre-

gate uncertainty on these consumptions. The util-

ity function u’s coefficient of relative risk aversion

(−cu′′/u′) exceeds 1.25

A consumer’s date-0 savings, equal to 1, are allo-

cated between the short- and long-term investments:

i1 + i2 = 1.

Technology is described as in Diamond and Dyb-

vig except for the aggregate uncertainty about r2. A

unit of short-term (liquid) investment sunk at date 0

yields r1 at date 1. A unit of short-term investment

sunk at date 1 yields r2 at date 2. The value of r2 is

publicly learned at date 1. A unit of long-term (illiq-

uid) investment sunk at date 0 yields R at date 2,

and l < r1 if liquidated at date 1. To keep the model

as closely related to Diamond and Dybvig as pos-

sible, let us assume that liquidating the long-term

project never delivers a higher return that the long-

term project itself:

lr2 < R for all realizations of r2. (12.15)

The random variable r2 is assumed to have a

continuous distribution with support included in

[0, R/l).

12.5.1 Socially Optimal Insurance

The first-best outcome is a choice of investments i1,

i2 and (r2-contingent) consumptions c1 and c2 and

liquidation level L solving

max
{i1,i2,c1(·),c2(·)L(·)}

{E[λu(c1)+ (1− λ)u(c2)]}

s.t.

λc1 � r1i1 + lL for all r2,

(1− λ)c2 � R(i2 − L)+ r2(r1i1 + lL− λc1)

for all r2,

i1 + i2 = 1,

0 � L � i2 for all r2.

The first constraint expresses the fact that impatient

consumers’ consumption must be financed from the

25. This assumption will be used in the “second-best analysis.” See

below.
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return on the date-0 investment in liquid assets,

plus, possibly, the liquidation of some of the long-

term assets. As we will see, this constraint may or

may not be binding. The second constraint says that

the consumption of the patient consumers stems

from the return on the unliquidated long-term asset,

plus, possibly the leftover from period 1 reinvested

at rate r2; it is obviously binding since there is no

point wasting resources.

We will say that there is earmarking (or match-

ing of the term structures of investments and con-

sumptions) if long-term investments serve to finance

long-term consumption and short-term investments

to finance short-term consumption:

c1 =
r1i1

λ
and c2 =

Ri2

1− λ.

Note that, under an earmarking policy, returns on

deposits are guaranteed; in other words, consump-

tions at dates 1 and 2 are immunized against interest

rate shocks (they are not contingent on r2).

Is it optimal to immunize depositors against inter-

est rate risk? From the first-order conditions associ-

ated with the first-best program, it can be shown that

it is never optimal to liquidate the long-term invest-

ment (L = 0). Intuitively, the liquid investment al-

ways yields more than the illiquid one when it comes

to generating date-1 income.

If reinvestment takes place at date 1 (i.e., r1i1 >

λc1), the consumptions must solve the following ex

post program (for a given r2):

max
{c1,c2}

{λu(c1)+ (1− λ)u(c2)}

s.t. (12.16)

λc1 +
(1− λ)c2

r2
= r1i1 +

Ri2

r2
.

We have written the constraint so as to highlight the

role of 1/r2 as the relevant discount factor between

dates 1 and 2 and the expression of the present dis-

counted value of the endowment (on the right-hand

side). Thus, if reinvestment occurs, then

u′(c1) = r2u
′(c2). (12.17)

Insights. Let us now state the results and then give

their interpretations and intuition:

(a) As depicted in Figure 12.3, earmarking is optimal

for low-interest-rate realizations (r2 � r∗2 ) and

• •
Earmarking region Reinvestment region

r
2r

2
*0

(a) (b)

Figure 12.3 Incidence of interest rate risk: (a) c1 = r1i1/λ,

c2 = Ri2/(1 − λ); (b) c1 < r1i1/λ, c2 > Ri2/(1 − λ), and

u′(c1) = r2u
′(c2).

reinvestment for high-interest-rate realizations

(r2 > r
∗
2 ).

(b) The level of investment i1 in liquid assets at

date 0 exceeds the level that would prevail if re-

investment opportunities did not exist or more

generally always had a low return (“r2 small”).

To forge intuition about these results, let us be-

gin with (a). One should think of the interest rate

risk as creating an option value in this first-best

world: if r2 is large, then the date-1 consumption

can be reduced in order to take advantage of the

favorable reinvestment opportunities. This implies

imposing some sacrifice on the impatient types to

benefit the patient types. The impatient consumers

are, of course, unhappy when the interest rate turns

out to be high at date 1. But this is part of a deal

a consumer is happy to accept at date 0. Conclu-

sion (b) follows directly from the presence of an

option value, which makes liquid investments more

valuable.

12.5.2 Incentive Compatibility

Let us now assume more realistically that the patient

consumers can feign impatience and reinvest their

withdrawal elsewhere at rate r2. The incentive to do

so will, of course, depend heavily on the realization

of r2. A high-interest rate then becomes a double-

edged sword. It offers investors an option value, but

it also incentivizes them to behave opportunistically

and to abuse the insurance deal.

The second-best solution is obtained by solving

the first-best program to which is appended the in-

centive compatibility constraint:

r2c1 � c2 for all r2. (12.18)

This incentive compatibility condition creates a

second rationale for a negative dependence of c1 on

r2: generous terms on short-term deposits encour-

age opportunistic withdrawals. We refer to Hellwig’s
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paper for a full treatment of the second-best solu-

tion when r2 exceeds 1 with probability 1. Two strik-

ing results (c) and (d) are as follows.

(c) In the reinvestment region, the impatient con-

sumers bear the entire valuation risk of long-

term investment while the patient consumers

bear the entire rollover risk of short-term invest-

ment. In particular, no one is immunized against

interest rate risk.

To see this, return to the first-best ex post pro-

gram (12.16). We noted that the budget constraint

corresponds to an income equal to the sum of the

dividend on the liquid investment and the date-1

discounted dividend on the illiquid one. Condition

(12.17) reflected a desire to provide some insur-

ance to benefit the impatient type. This insurance,

however, is undermined by the incentive compati-

bility condition: (12.17) together with r2 > 1 implies

that c1 < c2; the assumption that the coefficient of

relative risk aversion exceeds 1 then implies that

c1u
′(c1) > c2u

′(c2) and so (12.17) yields r2c1 > c2.

We thus conclude that (12.18) is binding:

r2c1 = c2.

This in turn implies that the two types can be given

the same income r1i1+(Ri2/r2) at date 1 (assuming

there is no liquidation. The same is true if there is

liquidation); and so

c1 = r1i1 +
Ri2

r2
and c2 = r2(r1i1)+ Ri2. (12.19)

These expressions make it clear that the impatient

types fully bear the valuation (or execution) risk on

the long-term asset and are hurt when the interest

rate rises; conversely, the patient types fully bear the

risk of rolling over the short-term return (r1i1) and

benefit from increases in the interest rate.

(d) Liquidation may become optimal.

To obtain a rough intuition as to why this may be

the case, note that (12.18) suggests reducing c1 and

therefore first-period investment i1. On the other

hand, when r2 is low, reinvestment does not pay

off and incentive compatibility is not an issue. It

may be optimal to increase c1 beyond i1/λ by liqui-

dating some of the long-term investment provided

that l is not too low. Thus, liquidation, if it occurs

at all, is associated with low-interest-rate episodes.

The second-best result according to which, in the

reinvestment region, the impatient consumers bear

the valuation risk and the patient ones the rollover

risk extends to the case in which liquidation is

optimal.

12.6 Private Signals and Uniqueness in

Bank Run Models

As discussed in Section 12.3, a large literature in

the last two decades has stressed the multiplicity

of equilibria associated with deposit contracts. A re-

cent and interesting strand of the literature, starting

with Morris and Shin (1998), argues that the mul-

tiplicity tends to disappear provided that the eco-

nomic agents receive private signals about the re-

turn to being patient and that their posterior beliefs

have wide enough support.26

Morris and Shin’s work is meant to address inter-

national financial crises.27 As we will see, it captures

some aspects of banking crises but not others. Like

the bank run literature, it embodies a strategic com-

plementarity: if other investors act in one way (say,

run), that makes me more eager to act in that partic-

ular way (also run). But it also assumes that investors

are better off when a run succeeds, while in banking

models runs destroy the investors’ value.

12.6.1 The Speculators’ Game

Morris and Shin’s stylized model of currency crises

goes as follows: investors (also called speculators)

can be thought of as being foreign investors. The

central bank of a country has a level of foreign re-

serves θ unknown to investors. The central bank be-

haves mechanistically: it spends reserves to ward off

speculation as long as there are some left. If S is the

26. Morris and Shin (1998) build their analysis on Carlsson and

van Damme’s (1993) work on global games. Earlier papers showing

that private information together with a wide enough support allow-

ing for the existence of dominant strategies, eliminates the multiplicity

of equilibria in timing or bidding games include Fudenberg and Tirole

(1986) on wars of attrition, Klemperer and Meyer (1989) on second-

price auctions in supply-and-demand schedules, and Maskin and Riley

(1986) on first-price auctions. See Frankel et al. (2003) for state-of-the-

art results on unique strategy profiles surviving iterative dominance

in games with strategic complementarities and slightly noisy payoff

signals.

27. The version presented here is drawn from Corsetti et al. (2002).
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Table 12.2 Payoffs in speculation game.

Individual Individual

investor investor does

attacks not attack

Attack succeeds (S � θ) 1− c 0

Attack fails (S < θ) −c 0

mass of financial resources mobilized by investors,

then the currency collapses if and only if

S � θ.

(This is meant to be a reduced form for a situation

in which the country initially maintains a peg, and,

if speculation is successful, the peg is abandoned

and the currency devalued.) The level of investors’

resources that can be mobilized to attack the cur-

rency is normalized to 1 (there is mass 1 of small

investors28). And so S ∈ [0,1]. In contrast, θ may

exceed 1, in which case speculation against the cur-

rency is always unsuccessful, or be negative (say,

because the country has contracted previous senior

debts), in which case attacks always succeed regard-

less of their magnitude.

Assume that an investor individually pays a fixed

cost c ∈ (0,1) when attacking the currency, and

gains 1 when the attack is successful and he has been

part of it.29 The investors’ decisions whether to at-

tack the currency are simultaneous. An individual in-

vestor’s contingent payoff is described in Table 12.2.

While the level of reserves θ is unknown, investors

receive a signal as to its value. This signal y is equal

to the true value plus noise:

y = θ + ση,

where η has mean 0 and σ measures (the inverse

of) the precision of the signal. The variable η has

cumulative distribution F with continuous density

on, say, (−∞,+∞).

In the public signal case, η is the same for all in-

vestors, who therefore have the same information.

28. See Corsetti et al. (2004) for the study of a similar game when

there is a large investor.

29. In general, payoffs under successful and unsuccessful specu-

lative attacks depends on the ex post exchange rate, which in turn

depends on the size of the speculative attack and the government re-

sponse to it. The speculation game may exhibit strategic complemen-

tarities or strategic substitutabilities (see Pathak and Tirole 2005).

In the private signal case, each investor receives his

own signal; that is, η is i.i.d. across investors. (We

could, of course, study the more general case in

which investors receive both a public and a private

signal. The results would be intermediate between

those derived below.)

12.6.1.1 Public Signal

Under a public signal, the outcome resembles that

in standard coordination games. There is a range

[y
¯
, ȳ] of public signals for which there are multi-

ple equilibria.

The no-run equilibrium exists provided that an in-

dividual investor does not find it profitable to attack

the currency when others do not (and so the cur-

rency collapses only if θ � 0):

(1− c)Pr(θ � 0 | y)− c Pr(θ > 0 | y) � 0,

or

(1− c)[1− F(y/σ)]− cF(y/σ) � 0,

or else

F(y/σ) � 1− c. (12.20)

Equation (12.20), taken as an equality, defines a

unique y
¯

. And so it is an equilibrium for no one to

attack as long as y � y
¯

.

Similarly, a run equilibrium exists provided that

an individual investor prefers attacking when the

others attack (and so the currency collapses when-

ever θ � 1):

(1− c)Pr(θ � 1 | y)− c Pr(θ > 1 | y) � 0

or

1− c � F

(

y − 1

σ

)

. (12.21)

Condition (12.21), taken as an equality, defines a

threshold ȳ > y
¯

, such that a run equilibrium exists

if and only if y � ȳ .

Note that this “run equilibrium” cannot be called

a “panic equilibrium.” Indeed, when y ∈ [y
¯
, ȳ] in-

vestors are better off coordinating on an attack. In a

sense, “panicking” corresponds to “staying put.”

12.6.1.2 Private Signals

Let us now assume that investor i (i ∈ [0,1]) receives

signal

yi = θ + σηi,
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and the noises are i.i.d. A simple “revealed prefer-

ence” argument shows that in equilibrium investor i

attacks the currency if and only if this signal lies

below some threshold y∗i (this is because the in-

vestor’s net expected payoff to attacking the cur-

rency is decreasing in the signal). Let us look for a

symmetric equilibrium (this is actually not restric-

tive): y∗i = y∗.

The amount of resources involved in the attack is

then

S(θ) = F
(

y∗ − θ
σ

)

,

and the currency collapses if and only if

S(θ) � θ.

Because S is decreasing in θ, the currency collapses

if and only if θ � θ∗, where

F

(

y∗ − θ∗
σ

)

= θ∗. (12.22)

Second, investor i attacks the currency if and only if

(1− c)Pr(θ � θ∗ | yi)− c Pr(θ > θ∗ | yi) � 0.

And so y∗ is defined by

1− c = F
(

y∗ − θ∗
σ

)

. (12.23)

Combining (12.22) and (12.23), we obtain

θ∗ = 1− c. (12.24)

Thus, θ∗ and y∗ are uniquely determined. The

uniqueness of equilibrium enhances predictive

power.30 When the investors’ information is precise

(σ close to 0), then y∗ converges to θ∗.

12.6.2 The Depositors’ Game

The bank run literature bears some resemblance to

the analysis of the speculators’ game in the previ-

ous subsection. But it differs from it in that runs are

inefficient from the point of view of investors.31 An-

other key difference is that, unlike the games consid-

ered in Carlsson and van Damme and by Morris and

30. Angeletos et al. (2005) study a framework that is similar to that

of Morris and Shin, but allow for a publicly observed policy choice

by the policy maker before investors decide whether to attack. As in

Morris and Shin, the equilibrium would be unique if the policy choice

were exogenous. However, the endogeneity and observability of the

policy reintroduce multiple equilibria in this model.

31. This distinction between the speculators’ game and the deposi-

tors’ game is drawn from Ventura (2001).

Shin, the game does not quite exhibit strategic com-

plementarities: as Figure 12.2 demonstrates, the net

incentive to withdraw is not an increasing function

of the number of other consumers who withdraw.

Let us return to the bank run model of Sec-

tion 12.3, assuming that l = 1. Recall that if deposi-

tors are entitled to withdraw some arbitrary level c̄1

at date 1, and fraction λ̂ � λ of depositors exercise

this option, the consumptions of the early and late

withdrawers are

c1(λ̂) = min

{

c̄1,
1

λ̂

}

and

c2(λ̂, R) = max

{

1− λ̂c̄1

1− λ̂
R,0

}

.

Patient consumers have utility c1 + c2, and there-

fore choose the highest of the two. Let us extend

the model of Section 12.3 in two respects:

• the date-2 return R is random and drawn from

some cumulative distribution on [0,∞);
• this return is unobserved, but each depositor i ∈
[0,1] observes a private signal

yi = R + σηi,

where the noises {ηi}i∈[0,1] have mean 0 and

are i.i.d. across depositors; they are drawn from

some cumulative distribution F with continuous

density f .

We maintain the assumption that the bank offers

a deposit contract, that is, the option to withdraw

some fixed amount c̄1 at date 1.

A (symmetric) equilibrium is then defined by a

threshold y∗ such that depositor i, when patient,

withdraws if and only if yi � y∗, and a fraction

λ∗(y∗, R) of withdrawing depositors,32 with

λ∗(y∗, R) = λ+ (1− λ)F
(

y∗ − R
σ

)

. (12.25)

It must also be the case that a depositor with sig-

nal y∗ is indifferent between withdrawing and not

withdrawing:

E[c1(λ
∗(y∗, R))] = E[c2(λ

∗(y∗, R), R)], (12.26)

where expectations are taken with respect to the ran-

dom variable R.

32. Thus λ∗(y∗, R) is the counterpart of S(θ) in the speculators’

game.
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Goldstein and Pauzner (2005) analyze a related

model (the technology succeeds or fails at date 2

and the probability of success is drawn from a con-

tinuous distribution). Their key insight is that while

the depositor game does not exhibit strategic com-

plementarities, it satisfies a weaker property (that

they label “one-sided strategic complementarities”),

namely, that the net incentive to withdraw increases

with the number of withdrawing agents whenever

this incentive is negative (see Figure 12.2).

They generalize the uniqueness result under this

weaker property. They are then able to perform com-

parative statics exercises. For example, the proba-

bility of a bank run increases continuously with the

degree of risk sharing offered by the intermediary.

12.7 Exercises

Exercise 12.1 (Diamond–Dybvig model in continu-

ous time). Following von Thadden (1997), suppose

that the representative consumer in the Diamond–

Dybvig model has wealth 1 at date 0 and will need

to consume at a time t ∈ [0,1]. Namely, the date

of the liquidity shock, instead of taking two pos-

sible values (periods 1 and 2 in Diamond–Dybvig),

belongs to an interval. It is distributed according

to cumulative distribution function F(t) (F(0) = 0,

F(1) = 1) with continuous density f(t). The repre-

sentative consumer’s expected utility is therefore

U =
∫ 1

0
u(c(t))f (t)dt,

where c(t) is her consumption if the liquidity shock

occurs at time t.

On the technological side, suppose that one can

at any point in time invest in “trees” that then grow

until they are harvested. One unit of investment liq-

uidated at maturitym yieldsR(m). So an investment

made at τ and “harvested” at t � τ yields R(t − τ)
per unit. We assume that R(0) = 1, Ṙ > 0 (where

a dot indicates a time derivative), and Ṙ/R, the in-

stantaneous technological rate of return, is increas-

ing in m. This implies in particular that a series of

short-term investments yields less than a long-term

investment with equivalent total length.

The choice is thus not about an allocation of in-

vestment at the initial date, and the exercise focuses

entirely on the insurance aspects. Under autarky, the

representative consumer receives expected utility

∫ 1

0
u(R(t))f (t)dt.

A bank offers a deposit contract in which a depos-

itor chooses the date of withdrawal and obtains c(t)

if she withdraws at time t ∈ [0,1]. The depositors’

liquidity shocks are i.i.d.

(i) Assume first that the realization of each depos-

itor’s liquidity shock is observable by the bank (so

there is no incentive compatibility issue). Show that

in the optimal insurance policy

u′(c(t))R(t)

is independent of t.

(ii) Assuming that the coefficient of relative risk

aversion exceeds 1, conclude that there is “front

loading,”

ċ(t)

c(t)
<
Ṙ(t)

R(t)
,

and so

c(t) > R(t) for t < t∗

and

c(t) < R(t) for t > t∗ for some t∗ ∈ (0,1).

(iii) Show that the “first-best outcome” described

above is not incentive compatible, in the sense that

depositors may want to withdraw early and reinvest

in the technology themselves.

Exercise 12.2 (Allen and Gale (1998) on fundamen-

tals-based panics). Consider the Diamond–Dybvig

model developed in Section 12.2 and add random-

ness in the payoff of the long-term asset. Consumers

are Diamond–Dybvig consumers: they invest 1 at

date 0, and learn at date 2 whether they are impa-

tient (their utility is u(c1)) or patient (their utility is

u(c2)). The probability of being impatient is λ.

The liquid or short-term technology yields one-

for-one in each period: r1 = r2 = 1. The illiquid,

long-term technology yields a random R (the same

for all illiquid investments). The cumulative distri-

bution is F(R) and the density f(R) on [0,∞). Liq-

uidating the long-term asset yields nothing (l = 0).
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One assumes

E(R) > 1.

The realization of R is publicly observed at date 1.

(i) Compute the socially optimal insurance con-

tract {c1(R), c2(R)}, ignoring incentive compatibil-

ity (the ability of patient types to disguise as im-

patient ones). Note that this contract is incentive

compatible.

(ii) Consider now a deposit contract. Consumers

are promised, if they withdraw at date 1, a fixed

payment c̄1, or a share of i1 if total withdrawal de-

mand exceeds i1. The date-2 income is shared among

depositors who did not withdraw at date 1. Long-

term assets are never liquidated. One will denote by

x(R) ∈ [0,1] the fraction of patient consumers who

“join the run” (declare they are impatient, and store

the money they have withdrawn from the bank).

Show that a judicious choice of c̄1 succeeds in im-

plementing the social optimum described in (i).

Exercise 12.3 (depositors’ game with a public

signal). Consider the depositors’ game of Section

12.6.2, except that the depositors receive the same

signal:

y = R + ση.
Determine the range of signals over which there exist

multiple equilibria.

Exercise 12.4 (random withdrawal rate). Consider

a three-date Diamond–Dybvig economy (t = 0,1,2).

Consumers are ex ante identical; they save 1 at

date 0. At date 1, consumers learn their preferences.

A fraction λ has utility u(c1) and a fraction (1 − λ)
has utility u(c2).

At date 0, the consumers put their savings in

a bank. They later cannot withdraw and invest in

financial markets, so the Jacklin critique does not

apply. That is, incentive compatibility issues are ig-

nored in this exercise (a patient depositor cannot

masquerade as an impatient one). The bank invests

the per-depositor savings into short- and long-term

projects: i1+i2 = 1. The long-term technology yields

(per unit of investment) R > 1 at date 2, but only

l < 1 if liquidated at date 1. The short-term technol-

ogy yields 1 (so r1 = r2 = 1).

(i) • Show that the optimal allocation (c1, c2) sat-

isfies

u′(c1) = Ru′(c2).

• Suppose that u(c) = c1−γ/(1 − γ) with γ > 1.

How do i1 and i2 vary with γ?

(ii) Suppose now that there is macroeconomic un-

certainty, in that λ is unknown: λ = λL with prob-

ability β and λ = λH with probability 1 − β, where

0 < λL < λH < 1. Set up the optimal program (let yω

and zω denote the fraction of short-term investment

that is not rolled over, and the fraction of long-term

investment that is liquidated, respectively, in state

of nature ω ∈ {L,H}). What does the solution look

like for l = 0 and l close to 1? (Showoffs: characterize

the solution for a general l!)
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